亚洲综合一区国产系列|国产无码精品一区二区|日韩久久久久久无码精品|国产在线911福利免费|国产超碰人人做人人爽AV|亚洲欧洲闷骚AⅤ妇女影院|91精品久久久久久久久无码|亚洲精品ty久久久久久久久久

    <td id="bknjv"><ins id="bknjv"><th id="bknjv"></th></ins></td>
    <i id="bknjv"><ins id="bknjv"></ins></i>
    <td id="bknjv"><ins id="bknjv"><label id="bknjv"></label></ins></td>
    <small id="bknjv"><dl id="bknjv"></dl></small>
    <td id="bknjv"><ins id="bknjv"><label id="bknjv"></label></ins></td>
    <p id="bknjv"><tr id="bknjv"></tr></p>

    position: EnglishChannel  > Innovation China> TJU Researchers Develop Lithium Battery with 200-300% More Power

    TJU Researchers Develop Lithium Battery with 200-300% More Power

    Source: Science and Technology Daily | 2025-08-22 11:27:05 | Author: YIN Wei

    After years of collaborative R&D, a team of researchers from China's Tianjin University (TJU) and their partners have devised a pioneering "delocalized electrolyte design" for high-energy lithium metal batteries, breaking the conventional dependence on dominant solvation structures.

    This innovation improves both energy density and endurance 200-300 percent times compared to the current lithium-ion batteries and is likely to give the country a cutting-edge advantage in lithium battery technology.

    The team published their research in Nature online on August 13. The novel design can develop lithium pouch cells with energy density exceeding 600 Wh/kg and battery packs with 480 Wh/kg energy density.

    With the rapid growth of electric mobility, the low-altitude economy, consumer electronics, and humanoid robots, the demand for high-energy, long-duration rechargeable batteries is rising sharply. Energy density is a core performance indicator for batteries, as it determines how much energy can be stored in a smaller and lighter device. Achieving higher energy storage under such constraints remains a major technical challenge.

    Lithium metal batteries, with much higher theoretical energy density than traditional lithium-ion batteries, are widely regarded as a promising next-generation solution to overcome current limitations in battery performance and range. However, current electrolyte designs are limited by their inherent reliance on solvent-dominated or anion-dominated solvation structures, hindering progress in both energy output and battery lifespan.

    Therefore, breaking through this bottleneck to produce batteries with enhanced energy density and extended life remains a key global challenge in energy storage research.

    According to Professor Hu Wenbin, the lead researcher and faculty member at the School of Materials Science and Engineering at TJU, the innovative design fosters a more disordered solvation microenvironment, optimizing the overall electrolyte performance.

    This balances solvent-dominated and anion-dominated solvation structures, reduces kinetic barriers, and stabilizes the electrode-electrolyte interface, offering strong potential for significant improvements in battery performance.

    This innovation led to the development of the high-energy "Battery600" and the scalable "Pack480" battery pack, laying a solid foundation for the future use of lithium metal batteries. It also delivers excellent cycling stability and safety, underscoring its potential to drive progress in high-energy battery technologies.

    Hu stated that the team is making significant progress toward the commercialization and practical application of their research findings.

    "We have established a pilot production line for high-energy lithium metal batteries and successfully implemented this innovative technology in three models of domestically developed micro electric unmanned aerial vehicles (UAVs)," he said.

    The flight endurance of these UAVs has been extended by up to 2.8 times compared to existing battery technologies, he added.

    The team now holds a complete chain of core technologies encompassing materials, electrolytes, electrodes and batteries. All key materials and technologies are independently developed and fully controllable, with high-consistency mass production capabilities already in place. Full-scale production is expected to begin this year.

    Throughout the research process, the team emphasized interdisciplinary collaboration and applied AI to significantly shorten the development cycle for electrolyte material screening.

    They also strengthened international and industry-academia partnerships, working closely with the National University of Singapore and several leading domestic enterprises to advance both fundamental innovation and engineering application.

    Editor:龍?jiān)?

    Top News

    • On September 9, the Changtai Yangtze River Bridge — the world's longest cable-stayed bridge — officially opened to traffic. Spanning 10.03 kilometers across the river, the bridge integrates expressway, intercity railway and ordinary highway functions. It reportedly holds six world records, including being the longest span cable-stayed bridge.

    CIFTIS Puts Cooperation on Fast Track

    Held in Beijing's Shougang Park, a transformed industrial area, this year's CIFTIS, as always, is a grand international gathering, with more than 80 countries and international organizations exhibiting or holding events.

    Qingdao Emerges as Livable International City

    Qingdao, a major port city in Shandong province in east China by the Yellow Sea, is rapidly emerging as a hub of internationalization, innovation and quality life.

    抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會(huì)影響您正常瀏覽本網(wǎng)頁

    您可以進(jìn)行以下操作:

    1.將瀏覽器切換回極速模式

    2.點(diǎn)擊下面圖標(biāo)升級(jí)或更換您的瀏覽器

    3.暫不升級(jí),繼續(xù)瀏覽

    繼續(xù)瀏覽
    洛浦县| 巴马| 菏泽市| 靖西县| 聂拉木县| 石棉县| 临邑县| 武乡县| 蒲城县| 天镇县| 阿鲁科尔沁旗| 调兵山市| 泸州市| 乡宁县| 宜宾市| 富源县| 白城市| 上思县| 绥滨县| 章丘市| 墨脱县| 淳安县| 枣庄市| 镇安县| 安顺市| 恩施市| 沛县| 永新县| 宽甸| 晋州市| 弥勒县| 泰兴市| 吐鲁番市| 浮梁县| 杨浦区| 赤壁市| 镇宁| 泗水县| 新乡县| 渑池县| 双柏县|